Ελατήρια και απλή αρμονική ταλάντωση IV

eagle graffiti

Ένας αετός σε γκράφιτι και το περιβάλλον της πόλης αλλάζει .

Μια άσκηση που δεν δημιουργήσαμε εμείς .

Επιστρέψτε στη σελίδα Ασκήσεις στη φυσική της Γ΄ λυκείου

Δείτε και αυτό

Ελατήρια και απλή αρμονική ταλάντωση 4

Σώμα μάζας m = 1 kg ισορροπεί συνδεδεμένο στα άκρα δύο κατακόρυφων ιδανικών ελατηρίων , όπως φαίνεται στο σχήμα .

C kat 2 katakorifa elatiria sx 2_1

Οι σταθερές των ελατηρίων είναι k1 = 250 N / m και k2 = 150 N / m . Απομακρύνουμε τη μάζα από τη θέση ισορροπίας της κατά τη διεύθυνση του άξονα των ελατηρίων και την αφήνουμε ελεύθερη .

α. Να βρείτε την σχέση των επιμηκύνσεων των ελατηρίων , στη θέση ισορροπίας του συστήματος .

β. Να δείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετε την περίοδο Τ .

γ. Αν το πλάτος της ταλάντωσης είναι Α = 0,3 m , βρείτε την κινητική ενέργεια της ταλάντωσης στη θέση x = – A·√3 / 3 .

Θεωρείστε θετική φορά την φορά προς τα κάτω .

Λύση

α.

C kat 2 katakorifa elatiria sx 1_1

Στη θέση ισορροπίας ισχύει :

ΣFy = 0 ⇒

– F1 + F2 + m·g = 0 ⇒

– k1·x1 + k2·x2 + m·g = 0 … (1) ⇒

– k1·x1 + k2·x2 + 1·10 = 0 ⇒

k2·x2 = k1·x1 – 10 ⇒

150·x1 = 250·x2 – 10 ⇒

15·x1 = 25·x2 – 1 .

β.

Στη τυχαία θέση :

ΣFx΄ = – F1΄ + F2 ΄ + m·g ⇒

ΣFx΄ = – k1·(x1 + x) + k2·(x2 – x) + m·g ⇒

ΣFx΄ = – k1·x1 – k1·x + k2·x2 – k2·x + m·g ⇒

με την βοήθεια της σχέσης (1) ,

ΣFx΄ = – k1·x – k2·x ⇒

ΣFx΄ = – (k+ k2)·x .

Η παραπάνω εξίσωση είναι της μορφής ΣF = – D·x , άρα το σώμα εκτελεί απλή αρμονική ταλάντωση με σταθερά :

D = (k+ k2) ⇒

D = (250 + 150) ⇒

D = 400 N / m .

H περίοδος της ταλάντωσης είναι :

Τ = 2·π·√(m / D) ⇒

Τ = 2·π·√(1 / 400) ⇒

Τ = 2·π / 20 ⇒

T = π / 10 s .

γ. 

Αρχή διατήρησης της ενέργειας στις ταλαντώσεις :

Ε = Κ + U ⇒

K = E – U ⇒

K = ½·D·A² – ½·D·x² ⇒

K = ½·D·(A² – x²) ⇒

K = ½·D·[A² – (A·√3 / 3)²] ⇒

K = ½·D·[A² – (A²·3 / 3²)] ⇒

K = ½·D·(A² / 3) ⇒

K = ½·400·(0,09 / 3) ⇒

K = 6 joule .

Σχόλιο : Μια άσκηση  που έχει διδακτικά ενδιαφέρον .

Επιστρέψτε στη σελίδα Ασκήσεις στη φυσική της Γ΄ λυκείου .

Advertisements

One thought on “Ελατήρια και απλή αρμονική ταλάντωση IV

Σχολιάστε

Εισάγετε τα παρακάτω στοιχεία ή επιλέξτε ένα εικονίδιο για να συνδεθείτε:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s